CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

Abbreviations

Awrt answers which round to Cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0 \text{ and } \frac{\pi}{6} \text{ (or 0 and 0.524)}$	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3} $ (or 1.05)		A0 for one solution or no solutions

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

3	(a)	$ \begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix} $	B2,1,0	B2 for 6 elements correct, B1for 5 elements correct
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X ² B1 for 3 correct elements in X ²
		-24 = 6m or -8 = 2m giving m = -4	B1	For $m = -4$ using correct I
		28 = 4m + n or 76 = -8m + n n = 44	M1 A1	complete method to obtain <i>n</i>
	(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen
				or B1 for $a = \sqrt{6}$ and no incorrect working
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $BC = \frac{47}{\left(4\sqrt{3}+1\right)} \times \frac{\left(4\sqrt{3}-1\right)}{\left(4\sqrt{3}-1\right)}$	B1	correct use of the area
		$BC = \frac{47}{(4\sqrt{3}+1)} \times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$	M1	correct rationalisation
		$BC = 4\sqrt{3} - 1$	A1	Dependent on all method being seen
		Alternative method		
		$\frac{1}{2} \left(4\sqrt{3} + 1 \right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3} + 1 \right) \left(a\sqrt{3} + b \right) = 47$	B1	
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1	
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations
	(ii)	$ (4\sqrt{3} + 1)^{2} + (4\sqrt{3} - 1)^{2} $ $ = (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1) $		
		$= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$	B1FT	6 correct FT terms seen
		$AC^2 = 98$ $AC = 7\sqrt{2} \text{ or } p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

Page 4	age 4 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

5	When $x = \frac{\pi}{4}$, $y = 2$	B1	y = 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{sec}^2 x$	B1	$5\sec^2 x$
	When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from differentiation
	Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	$y - their2 = -\frac{1}{their10} \left(x - \frac{\pi}{4} \right)$
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimplified
6 (i)	4 -2 2 4 6 8	B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
(ii)	(2,16)	M1 A1	$(2, \pm 16)$ seen or $(2, k)$ where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
(iii)	k = 0	B1	
	k > 16	B1	

Page 5	age 5 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x (+c)$	B1	$2\sin 3x$
	$\frac{\mathrm{d}x}{4\sqrt{3}} = 2\frac{\sqrt{3}}{2} + c$	M1	finding constant using $\frac{dy}{dx} = k \sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with $c = 5.20 \text{ or } \sqrt{27}$
	$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integration of <i>their</i> $k \sin 3x$
	$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant d for $k \cos 3x + cx + d$
	$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow $y = -0.667\cos 3x + 5.20x - 0.577\pi$ or better
8 (a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$		
	$k = \frac{1}{4}$	B1	
	p = 112 $q = 28$	B1FT B1FT	FT 1792 multiplied by their k^2 FT 1792 multiplied by their k^3
(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term seen
	$84x^{6}\left(-\frac{8}{x^{6}}\right) \text{ leading to}$ -672	DM1 A1	Term selected and 2^3 and 9C_3 correctly evaluated

Page 6	je 6 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

9 (a) (i	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$4!(\times 2)$ or $4 \times 3!(\times 2)$ oe
	or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe
	$2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$	A1	A1 for 48
(ii)	$5! - 48 \text{ or } 6 \times 2 \times 3!$	M1	$5! - their$ answer to (i) or for $6 \times 2 \times 3$
	72	A1	01 101 0 × 2 × 3
(b) (i)	3003	B1	
(ii)	3003 - 6 - 135	M1	their answer to (i) $-6 - {}^{6}C_{4} \times 9$
	2862	B1 A1	135 subtracted
	or 2M 3W = 720 3M 2W = 1260 4M 1W = 756	M1	complete correct method using 4 cases, may be implied by working. Must have at least one correct
	5M = 126 2862	B1 A1	any 3 correct

Page 7	ge 7 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

10 (i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$ or $ABC = \pi - \sin^{-1}\frac{10\sqrt{11}}{36}$	M1	correct cosine rule statement or correct statement for $\sin \frac{ABC}{2}$ or equating areas oe
	ABC = 1.9702	A1	1.9702 or better
(ii)	XY = 2	B1	for XY (may be implied by later work, allow on diagram)
	Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe	B1	correct arc length (unsimplified)
	Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$	M1	their $2 + 2 \times 6 \times$ their angle C
	= 9.03	A1	
(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area using <i>their C</i> area of \triangle <i>ABM</i> where <i>M</i> is the midpoint of <i>AC</i> , or $(\triangle S ABY \text{ and } BXY)$ or $\triangle ABC$
	= 4.50 or 4.51 or better	A1	Answers to 3sf or better

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

	T	ı	
11	$x^2 - 2x - 3 = 0$ or $y^2 - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
	leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.
	Midpoint (1, 3)	B1cao	midpoint
	(Gradient – 1)		
	Perpendicular bisector $y = 4 - x$	M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i>
	Meets the curve again if		midpoint
	$x^2 + 10x - 15 = 0$ or $y^2 - 18y + 41 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable.
	leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'
	$CD^{2} = \left(4\sqrt{10}\right)^{2} + \left(4\sqrt{10}\right)^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$
			must be seen if not using correct coordinates.
	$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

12 (a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{x+y} , 128 as powers of 2 and 9^{2y-x} , 27^{y-4} as powers of 3
	2x-1+2(x+y)=7 oe 2(2y-x)=3(y-4) oe leading to $x=4$, $y=-4$	A1 A1 A1	Correct equation from correct working Correct equation from correct working for both
	Example of Alternative method Method mark as above $2x - 1 + 2(x + y) = 7$ $(8 - 4x)$	M1 A1	As before One of the correct equations in x and y
	leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$ Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1	Correct, unsimplified, equation in x or y only Both answers
(b)	$(2(5^{z})-1)(5^{z}+1)=0$ leading to $2.5^{z}=1$ $(5^{z}=-1)$ $5^{z}=0.5$	M1 A1 DM1	solution of quadratic correct solution correct attempt to solve $2.5^z = k$, where
	$z = \frac{\log 0.5}{\log 5} \text{ or } z = -0.431 \text{ or better}$	A1	k is positive must have one solution only